INVERSION PROBLEM IN MEASURE AND FOURIER-STIELTJES ALGEBRAS

PRZEMYSŁAW OHRYSKO UNIVERSITY OF WARSAW

Let G be a locally compact Abelian group with its dual \hat{G} and let M(G) denote the Banach algebra of complex-valued measures on G. The classical Wiener-Pitt phenomenon asserts that the spectrum of a measure may be strictly larger than the closure of the range of its Fourier-Stieltjes transform. In particular, if G is non-discrete, there exists $\mu \in M(G)$ such that $|\hat{\mu}(\gamma)| > c > 0$ for every $\gamma \in \hat{G}$ but μ is not invertible. In the paper [N], N. Nikolski suggested the following problem.

Problem 1. Let $\mu \in M(G)$ satisfy $\|\mu\| \leq 1$ and $|\hat{\mu}(\gamma)| \geq \delta$ for every $\gamma \in \widehat{G}$. What is the minimal value of δ_0 assuring the invertibility of μ for every $\delta > \delta_0$? What can be said about the inverse (in terms of δ)?

In my talk I show that $\delta_0 = \frac{1}{2}$ is the optimal value for the first question (for non-discrete G). Also, I will present a partial solution for the quantitative variant of the problem (second question): if all elements of G (except the unit) are of infinite order then we can control the norm of the inverse for every $\delta > \frac{-1+\sqrt{33}}{8} \simeq 0,593$. This improves the original result of Nikolski: $\delta > \frac{1}{\sqrt{2}} \simeq 0,707$.

If time permits I will present some generalizations of the aformentioned results for Fourier-Stieltjes algebras built on non-commutative groups.

The talk is based on a paper [OW] written in collaboration with Mateusz Wasilewski.

References

- [OW] P. Ohrysko, M. Wasilewski: Inversion problem in measure and Fourier-Stieltjes algebras, J. Funct. Anal. 278 (2020), no. 5, 108399, 19 pp.
- [N] N. Nikolski: In search of the invisible spectrum, Ann. Inst. Fourier (Grenoble), vol. 49, no. 6, pp. 1925–1998, 1999.