The Douglas formula in L^p

Artur Rutkowski

Wrocaw University of Science and Technology, Poland E-mail: artur.rutkowski@pwr.edu.pl

The classical formula of Douglas [2] relates the Dirichlet energy of a harmonic function u on the unit disk $B(0,1) \subset \mathbb{R}^2$ to the energy of its boundary function g:

$$\int_{B(0,1)} |\nabla u(x)|^2 \, dx = \frac{1}{8\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{(g(\eta) - g(\xi))^2}{\sin^2((\xi - \eta)/2)} \, d\eta \, d\xi. \tag{1}$$

The kernel $1/(\sin^2((\eta - \xi)/2))$ is the normal derivative of the Poisson kernel of the unit disk and is comparable to $|x - y|^2$, so the right-hand side is approximately the $H^{1/2}$ seminorm. This shows that (1) is strongly related to the trace theory for the Sobolev class $W^{1,2}$.

Our goal is to obtain an analogue of (1) in L^p , $p \in (1, \infty)$, for domains more general than the disk. Namely, we prove the following formula for $C^{1,1}$ domains D:

$$\int_{D} |\nabla u(x)|^{2} |u(x)|^{p-2} dx$$

= $\frac{1}{2(p-1)} \int_{\partial D} \int_{\partial D} (g(z)^{\langle p-1 \rangle} - g(w)^{\langle p-1 \rangle}) (g(z) - g(w)) \gamma_{D}(z, w) \sigma(dz) \sigma(dw)$

Here, $a^{\langle p-1 \rangle} = a |a|^{p-2}$, σ is the surface measure on ∂D , and γ_D is the normal derivative of the Poisson kernel of D.

The talk is based on a joint work [1] with Krzysztof Bogdan and Damian Fafua (Wrocaw).

References

- K. Bogdan, D. Fafua, A. Rutkowski, The Douglas formula in L^p, Nonlinear Differ. Equ. Appl. (NoDEA), 30(2023), article number: 55.
- [2] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc., 33(1931), 263–321.

1